Abstract
This study presents a novel surgical model developed to provide hematological support for implanted cellularized devices augmenting or replacing liver tissue function. Advances in bioengineering provide tools and materials to create living tissue replacements designed to restore that lost to disease, trauma, or congenital deformity. Such substitutes are often assembled and matured in vitro and need an immediate blood supply upon implantation, necessitating the development of supporting protocols. Animal translational models are required for continued development of engineered structures before clinical implementation, with rodent models often playing an essential early role. Our long-term goal has been generation of living tissue to provide liver function, utilizing advances in additive manufacturing technology to create 3D structures with intrinsic micron to millimeter scale channels modeled on natural vasculature. The surgical protocol developed enables testing various design iterations in vivo by anastomosis to the host rat vasculature. Lobation of rodent liver facilitates partial hepatectomy and repurposing the remaining vasculature to support implanted engineered tissue. Removal of the left lateral lobe exposes the underlying hepatic vasculature and can create space for a device. A shunt is created from the left portal vein to the left hepatic vein by cannulating each with separate silicone tubing. The device is then integrated into the shunt by connecting its inflow and outflow ports to the tubing and reestablishing blood flow. Sustained anticoagulation is maintained with an implanted osmotic pump. In our studies, animals were freely mobile after implantation; devices remained patent while maintaining blood flow through their millifluidic channels. This vascular anastomosis model has been greatly refined during the process of performing over 200 implantation procedures. We anticipate that the model described herein will find utility in developing preclinical translational protocols for evaluation of engineered liver tissue.
Impact statement Tissue and organ transplantation are often the best clinically effective treatments for a variety of human ailments. However, the availability of suitable donor organs remains a critical problem. Advances in biotechnology hold potential in alleviating shortages, yet further work is required to surgically integrate large engineered tissues to host vasculature. Improved animal models such as the one described are valuable tools to support continued development and evaluation of novel therapies.
Comments